非刚性注册以非刚性方式与目标形状保持一致的源形状变形,是计算机视觉中的经典问题。由于数据(噪声,离群值和部分重叠)和高度自由度,因此此类问题可能具有挑战性。现有方法通常采用$ \ ell_ {p} $键入鲁棒标准来测量对齐误差并规范变形的平滑度,并使用近端算法来解决所得的非平滑优化问题。但是,这种算法的缓慢收敛性限制了其广泛的应用。在本文中,我们提出了一种基于全球平稳的稳健标准进行对齐和正则化的稳健非刚性登记的公式,该规范可以有效地处理异常值和部分重叠。使用大型最小化算法解决了该问题,该算法将每次迭代减少到使用封闭形式的解决方案的凸二次问题。我们进一步应用安德森加速度以加快求解器的收敛性,使求解器能够在具有有限的计算能力的设备上有效运行。广泛的实验证明了我们方法在两种形状之间具有异常值和部分重叠的形状之间的非刚性比对的有效性,并进行定量评估表明,就注册准确性和计算速度而言,它的表现优于最先进的方法。源代码可从https://github.com/yaoyx689/amm_nrr获得。
translated by 谷歌翻译
知识图嵌入(KGE)的有效性在很大程度上取决于建模固有关系模式和映射属性的能力。但是,现有方法只能以不足的建模能力捕获其中的一些。在这项工作中,我们提出了一个名为House的更强大的KGE框架,该框架涉及基于两种家庭转换的新型参数化:(1)住户旋转以实现建模关系模式的较高能力;(2)处理复杂关系映射属性的住户预测。从理论上讲,房屋能够同时建模关键的关系模式和映射属性。此外,房屋是对现有基于旋转的模型的概括,同时将旋转扩展到高维空间。从经验上讲,House在五个基准数据集上实现了新的最新性能。我们的代码可在https://github.com/anrep/house上找到。
translated by 谷歌翻译
我们为3D点云提出了一种自我监督的胶囊架构。我们通过置换等级的注意力计算对象的胶囊分解,并通过用对随机旋转对象的对进行自我监督处理。我们的主要思想是将注意力掩码汇总为语义关键点,并使用这些来监督满足胶囊不变性/设备的分解。这不仅能够培训语义一致的分解,而且还允许我们学习一个能够以对客观的推理的规范化操作。培训我们的神经网络,我们既不需要分类标签也没有手动对齐训练数据集。然而,通过以自我监督方式学习以对象形式的表示,我们的方法在3D点云重建,规范化和无监督的分类上表现出最先进的。
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.
translated by 谷歌翻译
Recently, great progress has been made in single-image super-resolution (SISR) based on deep learning technology. However, the existing methods usually require a large computational cost. Meanwhile, the activation function will cause some features of the intermediate layer to be lost. Therefore, it is a challenge to make the model lightweight while reducing the impact of intermediate feature loss on the reconstruction quality. In this paper, we propose a Feature Interaction Weighted Hybrid Network (FIWHN) to alleviate the above problem. Specifically, FIWHN consists of a series of novel Wide-residual Distillation Interaction Blocks (WDIB) as the backbone, where every third WDIBs form a Feature shuffle Weighted Group (FSWG) by mutual information mixing and fusion. In addition, to mitigate the adverse effects of intermediate feature loss on the reconstruction results, we introduced a well-designed Wide Convolutional Residual Weighting (WCRW) and Wide Identical Residual Weighting (WIRW) units in WDIB, and effectively cross-fused features of different finenesses through a Wide-residual Distillation Connection (WRDC) framework and a Self-Calibrating Fusion (SCF) unit. Finally, to complement the global features lacking in the CNN model, we introduced the Transformer into our model and explored a new way of combining the CNN and Transformer. Extensive quantitative and qualitative experiments on low-level and high-level tasks show that our proposed FIWHN can achieve a good balance between performance and efficiency, and is more conducive to downstream tasks to solve problems in low-pixel scenarios.
translated by 谷歌翻译
Rigorous guarantees about the performance of predictive algorithms are necessary in order to ensure their responsible use. Previous work has largely focused on bounding the expected loss of a predictor, but this is not sufficient in many risk-sensitive applications where the distribution of errors is important. In this work, we propose a flexible framework to produce a family of bounds on quantiles of the loss distribution incurred by a predictor. Our method takes advantage of the order statistics of the observed loss values rather than relying on the sample mean alone. We show that a quantile is an informative way of quantifying predictive performance, and that our framework applies to a variety of quantile-based metrics, each targeting important subsets of the data distribution. We analyze the theoretical properties of our proposed method and demonstrate its ability to rigorously control loss quantiles on several real-world datasets.
translated by 谷歌翻译
With the development of natural language processing techniques(NLP), automatic diagnosis of eye diseases using ophthalmology electronic medical records (OEMR) has become possible. It aims to evaluate the condition of both eyes of a patient respectively, and we formulate it as a particular multi-label classification task in this paper. Although there are a few related studies in other diseases, automatic diagnosis of eye diseases exhibits unique characteristics. First, descriptions of both eyes are mixed up in OEMR documents, with both free text and templated asymptomatic descriptions, resulting in sparsity and clutter of information. Second, OEMR documents contain multiple parts of descriptions and have long document lengths. Third, it is critical to provide explainability to the disease diagnosis model. To overcome those challenges, we present an effective automatic eye disease diagnosis framework, NEEDED. In this framework, a preprocessing module is integrated to improve the density and quality of information. Then, we design a hierarchical transformer structure for learning the contextualized representations of each sentence in the OEMR document. For the diagnosis part, we propose an attention-based predictor that enables traceable diagnosis by obtaining disease-specific information. Experiments on the real dataset and comparison with several baseline models show the advantage and explainability of our framework.
translated by 谷歌翻译
Recently, large-scale pre-trained models have shown their advantages in many tasks. However, due to the huge computational complexity and storage requirements, it is challenging to apply the large-scale model to real scenes. A common solution is knowledge distillation which regards the large-scale model as a teacher model and helps to train a small student model to obtain a competitive performance. Cross-task Knowledge distillation expands the application scenarios of the large-scale pre-trained model. Existing knowledge distillation works focus on directly mimicking the final prediction or the intermediate layers of the teacher model, which represent the global-level characteristics and are task-specific. To alleviate the constraint of different label spaces, capturing invariant intrinsic local object characteristics (such as the shape characteristics of the leg and tail of the cattle and horse) plays a key role. Considering the complexity and variability of real scene tasks, we propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios. First, to better transfer the generalized knowledge in the teacher model in cross-task scenarios, we propose a prototype learning module to learn from the essential feature representation of objects in the teacher model. Secondly, for diverse downstream tasks, we propose a task-adaptive feature augmentation module to enhance the features of the student model with the learned generalization prototype features and guide the training of the student model to improve its generalization ability. The experimental results on various visual tasks demonstrate the effectiveness of our approach for large-scale model cross-task knowledge distillation scenes.
translated by 谷歌翻译
Crowd counting plays an important role in risk perception and early warning, traffic control and scene statistical analysis. The challenges of crowd counting in highly dense and complex scenes lie in the mutual occlusion of the human body parts, the large variation of the body scales and the complexity of imaging conditions. Deep learning based head detection is a promising method for crowd counting. However the highly concerned object detection networks cannot be well applied to this field for two main reasons. First, most of the existing head detection datasets are only annotated with the center points instead of bounding boxes which is mandatory for the canonical detectors. Second, the sample imbalance has not been overcome yet in highly dense and complex scenes because the existing loss functions calculate the positive loss at a single key point or in the entire target area with the same weight. To address these problems, We propose a novel loss function, called Mask Focal Loss, to unify the loss functions based on heatmap ground truth (GT) and binary feature map GT. Mask Focal Loss redefines the weight of the loss contributions according to the situ value of the heatmap with a Gaussian kernel. For better evaluation and comparison, a new synthetic dataset GTA\_Head is made public, including 35 sequences, 5096 images and 1732043 head labels with bounding boxes. Experimental results show the overwhelming performance and demonstrate that our proposed Mask Focal Loss is applicable to all of the canonical detectors and to various datasets with different GT. This provides a strong basis for surpassing the crowd counting methods based on density estimation.
translated by 谷歌翻译